Generative Ul: LLMs are Effective UI Generators

Yaniv Leviathan Dani Valevski Matan Kalman Danny Lumen
Eyal Segalis Eyal Molad Shlomi Pasternak Vishnu Natchu Valerie Nygaard
Srinivasan (Cheenu) Venkatachary James Manyika Yossi Matias

Google Research

{leviathan, daniv, matank, dwasserman, eyalis, moladeyal,

spasternak, vnatchu, vnygaard, vsri, jmanyika, yossi}@google.com

Abstract

Al models excel at creating content, but typically render it with static, predefined
interfaces. Specifically, the output of LLMs is often a markdown “wall of text”.
Generative Ul is a long standing promise, where the model generates not just the
content, but the interface itself. Until now, Generative UI was not possible in a
robust fashion. We demonstrate that when properly prompted and equipped with
the right set of tools, a modern LLM can robustly produce high quality custom Uls
for virtually any prompt. When ignoring generation speed, results generated by
our implementation are overwhelmingly preferred by humans over the standard
LLM markdown output. In fact, while the results generated by our implementation
are worse than those crafted by human experts, they are at least comparable in
44% of cases. We show that this ability for robust Generative Ul is emergent,
with substantial improvements from previous models. We also create and release
PAGEN, a novel dataset of expert-crafted results to aid in evaluating Generative
UI implementations, as well as the results of our system for future comparisons.
Interactive examples can be seen at generativeui.github.io.

1 Introduction

Al models today generate content: text, code, images, videos, etc. However, the results of these
powerful tools are often presented using hard-coded and pre-designed user interfaces. Generative Ul
is a new modality where the Al model generates not only content, but the entire user experience. This
results in custom interactive experiences, including rich formatting, images, maps, audio and even
simulations and games, in response to any prompt (instead of the widely adopted “walls-of-text”).

An instant Al team for each prompt. Today, rich visual interfaces exist for common user journeys.
Specifically, teams composed of product managers, UX designers, and engineers work for extended
periods of time to build amazing rich experiences for broad prompt categories, shared by many users.
Generative Ul enables us to spin up an instant (Al-based) product management, UX design, and
engineering teams, to build an interactive experience, over the course of a minute, for a specific
prompt. While not as competent as human experts, Generative Ul enables custom experiences for
any prompt.

At present, the prevalent Ul for interacting with LLMs is a markdown-based chat interface. Specif-
ically, the model outputs markdown (that can include heading, emojis, tables, code-blocks, etc.).
These are significantly easier for humans to consume than raw text, yet results created by our Gen-
erative Ul implementation are overwhelmingly preferred over both (see Table 2). To evaluate our
implementation of Generative Ul we use human rater preference compared to a set of baselines. We

Preprint. Under review.

https://generativeui.github.io

[ty Taiy

W

T —
= 7= K

=)

Vincentvan Gogh . - *x G 1C ===

F=o1 R e

Figure 1: Results from our implementation (see generativeui.github.io).

https://generativeui.github.io

collect and make available PAGEN (see Section 4), a dataset of pages made by human experts for
custom prompts. While the expert-made pages are broadly preferred to those from our system, we
show that for the first time we get comparable results on a large fraction of prompts. See Section 3
for details, Appendix A.1 for screenshots, and generativeui.github.io for interactive results from our
system.

2 Method

Our Generative UI implementation outputs a single fully-generated web page and a set of accompa-
nying assets, such as images. The page is rendered as-is on the user’s browser. See Figure 2 for a
high level overview of the system.

System Instructions

\ Tools

Web Search

User Prompt — LLM —
Image Generation

HTML/CSSIJS

Post Processors

Processed page

Changes or
additions

User’s Browser

Figure 2: A high level system overview.

As depicted in Figure 2, we employ 3 main components:

1. A server exposes several endpoints enabling access to key tools, such as image generation
and search. The results can be made accessible to the model (increasing quality) or sent
directly to the user’s browser (increasing efficiency).

2. Carefully crafted system instructions. These in turn include: (1) the goal (2) planning and
thinking guidelines, (3) examples, and (4) a large set of technical instructions including
formatting guidelines, tool endpoints manual, and tips for avoiding common errors. These
contribute to the quality of the generated results (see Appendix A.5 for an illustrative prompt
from an early research prototype).

3. A set of post-processors. These lightweight components address a set of remaining com-
mon issues. Additional post processors deal with error reporting and page analysis. See
Appendix A.6.

https://generativeui.github.io

2.1 Consistent Styling

If desired, our setup allows producing results using a specific style and increased visual consistency
across generations. This is done via small changes to the system instructions. Specifically, we
experimented with replacing the short “Style” section in our prompt with more detailed variants
(which we call “Classic” and “Wizard Green”), specifying colors, fonts, etc. We observe that indeed
the generated results follow these styles. Interestingly, the model automatically adapts all elements,
including e.g. the generated images and icons to the desired styles. See Figures 3 and 4.

Skyscraper Showdown

8 Spruce Street vs. 56 Leonard Street

T Science of More Than Just a Pink Bird
Perfect Homemade Pizza T

Find Your Flamingo Flair

What's Your Perfect Crust?

Crankthe Hoot

Clash of the Titans Tabulous Flamingo Flair

8 Sprute Strat vs. 56 Leanard Streat ‘Bring the Trapits Home with a Splah of Pink

d 1"

Pn;m Stiat, &6 Leonard

Find Your Flamingo Stgle

[MUY T

ps for Pizza Perfection

Figure 4: Screenshots of Generative Ul results with “Wizard Green” styling.

3 Results

We evaluate user preference across several different result formats: a custom website crafted for the
prompt by a human expert (see Section 4), the top Google Search result for the query, text (LLM
output without markdown), standard LLM output (in markdown format), and our Generative Ul
implementation. We randomly sampled 100 prompts from LMArena [Chiang et al., 2024] (and
excluded 8 queries, see Appendix A.4) and collected pairwise preferences from human raters, sending
each result to 2 raters. Generation time is not a factor in the evaluation and we show raters pre-cached
results. We ask the human raters to rate on a 3 point scale: Left Preferred, Neutral, Right Preferred.

In addition to the LM Arena prompts, we also created a custom prompt set composed of information
seeking prompts (see Appendix A.3). We evaluated on both sets using the same methodology. See
Appendix A.1 for selected example generations from our Generative Ul implementation.

Tables 1 and 2 show the resulting ELO scores and side-by-side user preference for each of the
UI modalities for the prompts from LMArena. Generative Ul obtains an ELO score of 1710.7,
indicating a strong user preference over all other formats, except human experts. Notably, when
compared to Markdown UI - the next best method, Generative Ul is preferred 82.8% of the time.
See Appendix Tables 6 and 7 for the results when evaluating on the Information Seeking prompt set
(92.6% preference for our implementation).

Table 1: ELO scores for user preference (LMArena).

Format ELO Score
Website (human expert) 1756.0
Generative Ul 1710.7
Generative Markdown 1459.6
Website (top search result) 1355.1
Generative Text 1218.6

Table 2: Pairwise user preferences wins (LMArena). Generative Ul strongly preferred except vs.
human experts.

Method Custom Website Generative Ul Markdown Website Text
(human expert) (top result)

Website (experts) - 56.0% 84.4% 89.1% 94.0%

Generative Ul 43.0% - 82.8% 90 % 97.0%

Markdown 15.6% 13.9% - 44.4% 81.1%

Website (search) 4.9% 6.7% 52.2% - 58.9%

Text 2.7% 3.0% 1.1% 38.3% -

3.1 Emergent Capability

We ablate the importance of the backbone model and show that Generative Ul is an emergent
capability with newer models. In Tables 3 and Table 4 we see strong user preference and less errors
for results with the new Gemini models.

Table 3: Model Performance Comparison (LMArena)

Backbone Model Elo Score Output Errors
Gemini 3 1706.7 0%
Gemini 2.5 Pro 1653.6 0%
Gemini 2.5 Flash 1623.9 0%
Gemini 2.0 Flash 1332.9 29%
Gemini 2.0 Flash-Lite 1183.0 60%

Table 4: Model Performance Comparison (Info-Seeking)

Backbone Model Elo Score Output Errors
Gemini 3 1739.31 0%
Gemini 2.5 Pro 1578.53 0%
Gemini 2.5 Flash 1577.74 0%
Gemini 2.0 Flash 1361.75 0%
Gemini 2.0 Flash-Lite =~ 1242.67 1%

3.2 Prompt Ablations

We analyzed the impact of our prompting strategy. First we compared to a minimal prompt that only
instructs the model how to use image search and image generation, as well as how to output a valid
HTML. Raters preferred the UI generated with the full prompt in significantly more cases. Next
we took out specific parts of the full prompt including the core philosophy and the corresponding
examples. See Table 5 and Table 8 in the Appendix for details. Interestingly, the model is strong
enough to show reasonable performance even with a minimal prompt.

Table 5: Effect of Prompting Strategy (LMArena)

Prompt Ablation ELO Score

Full Prompt 1553.23
Minimal Prompt 1496.00
No Philosophy 1450.77

4 The PAGEN Dataset

To facilitate a clear and consistent evaluation of our Generative Ul implementation, we compare its
results to expert-human-made websites. To that end, we constructed a human-expert-made dataset
of websites for a sample of prompts (using the LMArena and Info-Seeking prompt sets used for
evaluation in this paper) . We call this dataset PAGEN and make it available publicly, in hopes of
encouraging consistent comparisons with future work.

We considered several methodologies for collecting these human made websites, including utilizing
existing public websites, using a pre-existing dataset, and engaging a specific provider to develop all
of the necessary websites. Ultimately, we opted to construct our own dataset by contracting highly
rated independent web developers sourced online. This decision was driven by a desire to create a
clear pairing of a specific user prompt and the resulting website, maintain uniformity in time and
investment across websites, ensure clear and consistent guidelines for all use cases (e.g. encourage
interactivity and high quality visuals), ensure that the user experience is prioritized without any
foreign considerations (such as SEO optimizations), ensuring no copyrighted content was used, and
ensuring the consistency of the tools used (e.g. we encouraged using Al tools), and the diversity and
quality of the contractors. See more details in Appendix A.4.

5 Related Work

The concept of automatically generating user interfaces from high-level descriptions has been a
long-standing ambition in Human-Computer Interaction (HCI) and software engineering. Our work
builds upon several key areas of research, including natural language interfaces, code generation by
large language models (LLMs), and evaluation methodologies for generative systems.

UI Generation from Natural Language Early efforts in this domain often relied on structured
inputs or constrained languages to generate interfaces for specific platforms [Puerta et al., 1994,
Landay and Myers, 1995]. With the rise of deep learning, approaches evolved to translate visual
inputs, such as hand-drawn mockups or screenshots, directly into code [Beltramelli, 2017, Gui et al.,
2025]. The recent proliferation of powerful LLMs has enabled the generation of UI code directly
from unstructured natural language prompts. Our approach differs by tasking the LLM to generate
entire, interactive, and data-driven web applications from a single prompt, effectively acting as an
autonomous web developer.

Large Language Models for Code Generation The capabilities of our system are fundamentally
enabled by the advancements in code generation by LLMs. This field gained prominence with models
like OpenAI’s Codex [Chen et al., 2021], which demonstrated a strong ability to translate natural
language into functional code across various languages. Subsequent research has produced a host
of powerful code-generating models, such as AlphaCode [Li et al., 2022] and Code Llama [Roziere
et al., 2024], that are trained on vast datasets of public code. While these models are often used as

assistants for developers (e.g., GitHub Copilot), our work leverages this underlying capability for a
different purpose: the autonomous end-to-end generation of a complete user-facing product, not just
a code snippet. As we demonstrate, this ability to architect and implement a full application appears
to be an emergent property of the most recent state-of-the-art models.

Interaction Paradigms for AI The standard user interface for interacting with LLMs is a chat-
based format where the model’s output is rendered as markdown. While an improvement over plain
text, this modality is inherently static. Some systems have explored a middle ground, which we
term "Templated UL" where an LLM can invoke and populate predefined, interactive widgets from a
fixed library to enrich its responses [Pinsky, 2023]. Our work represents a paradigm shift away from
both static markdown and constrained templates. By allowing the model to generate the Ul itself,
we unlock the potential for bespoke, dynamic, and highly contextual experiences, such as games,
simulators, and custom data visualizations, that are tailored to the specific needs of each prompt.

6 Discussion

We presented a novel implementation of Generative UI, where the model can produce a custom
visual interactive interface for any prompt. We show that when ignoring generation speed, our results
are overwhelmingly preferred by users over the standard markdown UI (in 83% of evaluated cases,
see Table 2). We further show that Generative Ul is an emergent capability of the newest and most
capable models. As shown in Tables 3 and 4, the use of our newest models results in a significant
increase in user preference and a significant reduction in generation errors, vs. previous models. Our
implementation relies on a combination of exposing a set of tools in an easy-to-use fashion, detailed
system instructions (see Appendix A.5), and a series of post-processors to correct common issues.

PAGEN We created the PAGEN dataset - a curated dataset of expert built web sites for LLM
prompts (see Section 4). While the pages created by the expert humans are better than those created
by our system, we show that our Generative UI implementation can at least match its quality in 44%
of cases. We are making PAGEN available publicly to enable easier evaluation by future research.

Limitations and Future Directions One primary limitation and an important area for future
research is the slow generation speed, which can often take a minute or two. Streaming the generated
results allows the users to start interacting with a partially rendered page, reducing this number by
about a half. Optimizing the use of techniques such as speculative decoding [Leviathan et al., 2022]
could result in further improvements. A second important limitation of Generative Ul is that errors
(Javascript errors, CSS errors, HTML errors, etc.) can occasionally occur.

A First Step Towards a New Paradigm LLMs transformed the world’s finite collections of texts
to an infinite collection, where an ephemeral text is created on the spot for any need. This turned
out to be very useful. It is early days for Generative UI, and important limitations exist. Yet, we are
excited about a future where users don’t have to pick from a finite library of applications or visual
pages, but instead, they have access to an infinite catalog, where the right ephemeral interface is
generated on the spot tailored for their need.

Acknowledgements

This work would not have been possible without the valuable contributions, insightful suggestions,
support, feedback and encouragement from Yoav Tzur, Zak Tsai, Hen Fitoussi, Amir Zait, Oren
Litvin, Christopher Haire, Liat Ben-Rafael, Ronit Levavi Morad, Kristen Chui, William Li, Ivan
Kelber, Chloe Jia, Ryan Allen, Maryam Sanglaji, Tanya Sinha, Josh Woodward, Jeff Dean, and the
Theta Labs, Google Research, Google Search, and Gemini teams, and, as always, our families.

References

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot, 2017. URL
https://arxiv.org/abs/1705.07962.

https://arxiv.org/abs/1705.07962

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024. URL https://arxiv.org/
abs/2403.04132.

Yi Gui, Yao Wan, Zhen Li, Zhongyi Zhang, Dongping Chen, Hongyu Zhang, Yi Su, Bohua Chen,
Xing Zhou, Wenbin Jiang, and Xiangliang Zhang. Uicopilot: Automating ui synthesis via
hierarchical code generation from webpage designs. In Proceedings of the ACM on Web Conference
2025, WWW 25, page 1846-1855. ACM, April 2025. doi: 10.1145/3696410.3714891. URL
http://dx.doi.org/10.1145/3696410.3714891.

James A. Landay and Brad A. Myers. Interactive sketching for the early stages of user interface
design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’95, page 43-50, USA, 1995. ACM Press/Addison-Wesley Publishing Co. ISBN 0201847051. doi:
10.1145/223904.223910. URL https://doi.org/10.1145/223904.223910.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2022. URL https://arxiv.org/abs/2211.17192.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092—-1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abql1158. URL http://dx.doi.org/10.1126/science.abq1158.

Yury Pinsky. Bard can now connect to your Google apps and services. Google
Blog, September 2023. URL https://blog.google/products/gemini/
google-bard-new-features-update-sept-2023/.

Angel R. Puerta, Henrik Eriksson, John H. Gennari, and Mark A. Musen. Model-based automated
generation of user interfaces. In Proceedings of the Twelfth AAAI National Conference on Artificial
Intelligence, AAATI’94, page 471-477. AAAI Press, 1994.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024. URL
https://arxiv.org/abs/2308.12950.

Upwork Global Inc. Upwork. https://www.upwork. com.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric P. Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world 1lm conversation dataset, 2024. URL https://arxiv.
org/abs/2309.11998.

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
http://dx.doi.org/10.1145/3696410.3714891
https://doi.org/10.1145/223904.223910
https://arxiv.org/abs/2211.17192
http://dx.doi.org/10.1126/science.abq1158
https://blog.google/products/gemini/google-bard-new-features-update-sept-2023/
https://blog.google/products/gemini/google-bard-new-features-update-sept-2023/
https://arxiv.org/abs/2308.12950
https://www.upwork.com
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2309.11998

A Appendix

A.1 Selected Examples

All examples presented here can be viewed interactively at generativeui.github.io.

A.1.1 Fractal Explorer

User prompt: [Explain fractals - go really in depth - i want to learn everything about it in detail]

The generative Ul system produced an immersive, interactive webpage titled "Fractal Explorer"
that serves as a deep dive into the mathematics and visual beauty of infinite complexity. The page
guides users through the fundamental concepts of self-similarity and a historical timeline of fractal
discovery—from Weierstrass’s "monsters" to Benoit Mandelbrot’s modern definitions. Central
to the experience are robust interactive tools, including a "Dimension Calculator” that visually
demonstrates the Hausdorff dimension formula, a dual-canvas explorer that links the Mandelbrot set
to corresponding Julia sets in real-time via mouse movement, and dynamic sliders that allow users to
build geometric fractals like the Koch Snowflake and Sierpinski Triangle iteration by iteration. The
page concludes with a generative simulation of the "Chaos Game" to organically grow a Barnsley
Fern and a section detailing practical applications in technology, biology, and computer graphics.

8 The Mathema! ctal Dimension

Fractals

D= {ugtn}
0g(S)

4 Fractals in Nature: The Chaos Game

© The Mandelbrot & Julia Sets r 4

Figure 5: "Explain fractals" generated web-app.

https://generativeui.github.io

A.1.2 History of Time Keeping Devices
User prompt: ["History of time keeping devices"|

The generative Ul system produced a visually immersive, dark-themed webpage titled "Chronos:
A History of Timekeeping" that traces the evolution of measuring time. The layout features a
vertical, scroll-animated timeline that guides users through six distinct eras, starting with ancient
methods like Egyptian obelisks and water clocks, progressing through the mechanical and pendulum
revolutions initiated by innovators like Christiaan Huygens, and concluding with the precision of
quartz and atomic clocks. Each timeline entry pairs descriptive historical context with thematic
generated imagery and specific "Key Insight" or "Engineering Breakthrough" callout boxes to
highlight technological leaps. The design utilizes a responsive grid system with alternating text and
image placements, enhanced by fade-in scroll effects to create a narrative flow from the "Mechanical
Dawn" to "Atomic Perfection.”

(©)

The Relentless March of
Time

Conquering the Oceans

Nature's Clockwork

Atomic Perfection

Figure 6: "History of Time Keeping Devices" generated web-app.

10

A.1.3 Memory Game

User prompt: [Create a match up memory game with beautiful large cards showing the people from
the images making funny expressions and wearing funny props]

The generative Ul system produced an interactive "Funny Faces Memory Match" game designed
to test users’ recall through a responsive grid of flip-cards. The interface utilizes 3D transform
effects and Tailwind CSS to present a seamless gameplay experience where players uncover pairs of
generated portraits featuring subjects with humorous accessories, such as oversized clown glasses,
pirate hats, and propeller beanies. Real-time state tracking monitors the player’s progress by updating
move counts and successful matches, culminating in a victory modal that summarizes performance
and offers a "Play Again" option upon clearing the board.

Funny Faces Memory

Flip the cards to find the matching pairs of goofy expressions!

@ Moves:14) Pairs: 2/8

Figure 7: "Memory Game" generated web-app.

11

A.1.4 Basketball Math

User prompt: [Teach my 5 year old addition, subtraction, multiplication and binary representation
with cute creatures that play basketball. He loves basketball].

The generative Ul system produced an interactive educational application titled "Little Ballers
Math Academy," designed to teach fundamental arithmetic and binary concepts through a playful,
basketball-themed interface. The application features a central "Training Camp" menu where users
can select from four distinct game modes: addition ("Passing Practice"), subtraction ("Taking Shots"),
multiplication ("Team Drills"), and a unique binary counting challenge ("Alien Scoreboard") that
utilizes interactive toggle switches to represent values. Each mode employs dynamic visual aids—such
as counting basketballs held by animated monsters and robots—to assist with problem-solving, while
providing immediate feedback through celebratory confetti effects and a real-time score tracking
system.

Welcome to Training Camp!
Pick

to play with the team ® ®

¥ o~ AN
: 1 1
Passing Practice Taking Shots

How many basketballs together?
% -% 2 5 q

Team Drills Alien Scoreboard
(Multiplication x) (Binary 0101)

oy g 3 g

We had 6 balls. We lost 3. How many are
left? 3 aliens have 3 balls each. Total balls?

3 8 1 9 7 10

Figure 8: "Basketball Math" generated web-app.

12

A.2 Additional Results

We provide results on the Info-Seeking prompt set, comparing the different modalities. Table 6 shows
the competitive ELO scores, and Table 7 shows the user preferences matrix. We observe the same
trends as we saw on the LM Arena prompt set, with a strong preference to Generative UI and human
experts. Interestingly, top-search websites score higher on this set, probably due to the different
distribution of prompts.

Table 6: ELO scores for user preference (Info-Seeking).

Format ELO Score
Website (human expert) 1776.38
Generative Ul 1708.97
Website (top search result) 1468.61
Generative Markdown 1354.80
Generative Text 1191.23

Table 7: Pairwise user preferences wins (Info-Seeking). Generative Ul strongly preferred except vs.
human experts.

Method Custom Website Generative Ul Markdown Website Text
(human expert) (top result)

Website (experts) - 64.2% 97.1% 84.3% 84.8%

Generative Ul 31.9% - 92.6 % 84.3% 91.2%

Markdown 2.9% 7.4% - 22.5% 86.8%

Website (search) 12.7% 8.3% 77.0% - 73.5%

Text 11.3% 5.4% 8.8% 26.5% -

We also provide in Table 8 the prompt ablation results on the Information Seeking prompt set.

Table 8: Effect of Prompting Strategy (Info-Seeking)

Prompt Ablation ELO Score

Full Prompt 1551.34
Minimal Prompt 1488.27
No Philosophy 1460.39

A.3 Information Seeking Prompts

. tell me about the many dimensions of albert einstein
. van gogh gallery with life context for each piece

. Marie Curie

. Charles Darwin

. amelia earhart

. explain quantum computing for a high schooler

. French history for kids

. fun home chemistry experiments for kids

O 00 9 N Lt AW N =

. help me teach the relationship between slope and tangent using puppy growth
. how to make a Baby Mobile
. how to make a good homemade pizza crust with a regular oven

—
N = O

. how to teach a puppy basic tricks

. 1 want to learn how to do a handstand

[
w

13

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

53.
54.
55.

speculative decoding for kids

tower of hanoi

Met Gala outfits

fall fashion trends

green things

Lychee!!

us dollar bill

history of mulligan stew

History of tea

illustrated history of google

visual history of Al

History of the Airplane

Visual history of Atomic Bombs
Visual history of Chemistry
History of France for kids
decorating with flamingos
emergency go bag prep

how do I prepare my home for earthquakes
help me plan what I need for my new-borns bedroom
8 spruce street vs 56 leonard in nyc
cars with shield logos

flags with stars

freedom trail map

0j simpson car chase on map
should i wait for the switch 2
ukraine war timeline map

Ising model

billiard with the planets

coloring app for 6 year olds

map of the world

walkable neighborhoods in SF
Which eink tablet is the best?
Which phone is the best?

Which gaming console is the best?
Best women’s clothes for skiing
Dresses for the summer

make a tourism page for clive, iowa
make a home page for my new esports team, team Noctus

I want to plan a roadtrip off the beaten path, starting in northern California and heading east.
roundtrip should be about 2 weeks. i like unusual tourist attractions. the vibe should be like
the weird al song about the biggest ball of twine in minnesota.

i want to watch the next meteor shower visible from saratoga, ca
1’m visiting singapore for 3 days in september for a conference

plan a trip from tomorrow returning on sat in SF with a 5 yo and a 7 months old staying in
japan town

14

56. i want to plan some stargazing parties from chicago

57. Agesta Beach guide

58. help me and my wife plan a trip to Japan, we love Studio Ghibli, hot springs and food
59. I want to take a tour of South America - help me plan my trip there

60. compare the Chiefs and the Colts

61. compare the Chicago Bulls and Orlando Magic

62. top 5 football teams this year

63. top 5 basketball teams this year

64. Which team is going to win the MLB this year?

A.4 Data Collection Details

We engaged web designers through the freelance platform Upwork Global Inc., specifically seeking
those with experience in design and content creation, along with positive recommendations. Our
outreach involved a proposal to design a website within a few days, adhering to detailed guidelines
(see Appendix A.7). We directed contractors to these instructions and declined all follow-up questions.

There are two types of website topics: (1) 100 randomly sampled queries from LMArena [Zheng
et al., 2024], where we manually removed 8 potentially nonsensical or sensitive queries, and (2) a set
of 64 manually selected queries in a set of domains covering general themes and specific prompts.

About 50% of the contacted contractors responded promptly and accepted our proposal. We offered
each contractor between $100 and $130 per website, aligning with their stated pricing requirements.
We did not engage in price negotiations. On average, it took each contractor around 3-5 hours to
complete working on each website.

In the subsequent phase, we requested additional websites from contractors who successfully com-
pleted the initial task in a timely manner. In total, we reached out to 34 contractors, out of which
18 contractors accepted our offers. Each of the contractors generated between 5 and 20 websites,
depending on their pace and availability.

Contractors were granted full autonomy in their choice of tools and formats, provided the websites
were delivered as zipped HTML files. In some instances, contractors disclosed the use of Al-powered
tools for website development (we explicitly allowed using any tools they would normally use in the
instructions, including Al tools). Upon submission, we did not provide any comments or feedback.
By and large the contractors did not require additional guidelines beyond the original instructions
shared with them, and were able to complete the tasks on their own.

A.5 The System Instructions

A key component of our Generative Ul implementation is a carefully crafted system prompt.

Here we include an illustrative example of such instructions from an early research prototype. This
example includes around 3K words, in 5 categories:

Core philosophy

Examples

Planning instructions

Technical details and endpoint use (most of the system instructions).

M.

Dynamically populated information, including the date and the user’s location (if shared).

The full illustrative prompt:

You are an expert, meticulous, and creative front-end developer. Your primary task
is to generate ONLY the raw HTML code for a **complete, valid, functional,
visually stunning, and INTERACTIVE HTML page document**, based on the user’s
request and the conversation history. **Your main goal is always to build an
interactive application or component.

15

**Core Philosophy:*x*

* x*Build Interactive Apps First:** Even for simple queries that *could* be answered
with static text (e.g., "What’s the time in Tel Aviv?", "What’s the weather?"),
*xyour primary goal is to create an interactive application** (like a dynamic

clock app, a weather widget with refresh). **Do not just return static text
results from a search.*x*

* *xNo walls of text:** Avoid long segments with a lot of text. Instead, use

interactive features / visual features as much as possible.

* x*Fact Verification via Search (MANDATORY for Entities):** When the user prompt

concerns specific entities (people, places, organizations, brands, events, etc.)
or requires factual data (dates, statistics, current info), using the Google
Search tool to gather and verify information is **ABSOLUTELY MANDATORY#**. Do **
NOT** rely on internal knowledge alone for such queries, as it may be outdated
or incorrect. **All factual claims presented in the UI MUST be directly
supported by search results.** Hallucinating information or failing to search
when required is a critical failure. Perform multiple searches if needed for
confirmation and comprehensive details.

* **Freshness:*x When using a piece of data (like a title, position, place being

open etc.) that may have recently changed, use search to verify the latest news.

* *xNo Placeholders:** No placeholder controls, mock functionality, or dummy text
data. Absolutely **FORBIDDEN** are any kinds of placeholders. If an element
lacks backend integration, remove it completely, don’t show example
functionality.

* **Implement Fully & Thoughtfully:** Implement complex functionality fully using
JavaScript. **Take your time** to think carefully through the logic and provide

a robust implementation.

* *xxHandle Data Needs Creatively:** Start by fetching all the data you might need

from search. Then make a design that can be fully realized by the fetched data.
NEVER simulate or illustrate any data or functionality.

* *xQuality & Depth:** Prioritize high-quality design, robust implementation, and
feature richness. Create a real full functional app serving real data, not a
demo app.

*xApplication Examples & Expectations:**

*Your goal is to build rich, interactive applications, not just display static text
or basic info. Use search for data, then build functionality.*

* *x*xExample 1: User asks "what’s the time?"** -> DON’T just output text time. DO
generate a functional, visually appealing **Clock Application** showing the
user’s current local time dynamically using JavaScript (‘new Date()‘).
Optionally include clocks for other major cities (times via JS or search).
Apply creative CSS styling using Tailwind.

* xxExample 2: User asks "i will visit singapore - will stay at intercontinental - i

want a jogging route up to 10km to sight see"** -> DON’T just list sights. DO
generate an **Interactive Map Application*x:

* Use search **mandatorily** for Intercontinental Singapore coordinates &
popular nearby sights with their details/coordinates.

* Use Google Maps to display a map centered appropriately.

* Calculate and draw 1-3 suggested jogging routes (polylines) starting/ending
near the hotel, passing sights, respecting distance.

* Add markers for sights. For sight images, use standard ‘‘ tags with the
format ‘‘.

* Include controls to select/highlight routes.

* Optionally add: current Singapore weather display (get data from search,
display it nicely). Ensure full functionality without placeholders.

* **xExample 3: User asks "barack obama family"x* -> DON’T just list names. DO
generate a **Biographical Explorer App**:

* Use search **mandatorily** for family members, relationships, dates, life
events, roles. For images, use standard ‘‘ tags with the format ‘‘.

* Present the information visually: perhaps a dynamic **Family Tree graphic#** (
using HTML/Tailwind/JS) and/or an interactive **Timelinex* of significant
events.

* Ensure data accuracy from search. Make it interactive.

16

* xxExample 4: User asks "ant colony"** -> DON’T just describe ants. DO generate a

*%2D Simulation Application**:

* Use HTML Canvas or SVG with JavaScript for visualization.

Simulate basic ant behavior (movement, foraging).

* Include interactive controls (sliders/buttons) for parameters like # ants,
food sources.

* Display dynamically updating metrics/graphs using JS.

* Apply appealing graphics and effects using Tailwind/CSS. Must be functional.

*x *xExample 5: User asks for "<PERSON_NAME>" (e.g., "yaniv leviathan")#** -> DON’T
guess or hallucinate. DO perform **MANDATORY and thorough searches**. Generate

a **Rich Profile Application*x*:

* Synthesize search results into logical sections (Bio, Career, etc.).

* Use appropriate interactive widgets (timeline, lists, etc.). For images, use
standard ‘‘ tags with the format ‘<img src="/image?query=Relevant Image

Search Term">‘.

* Ensure ALL presented facts are directly based on and verified by search
results.

* **Example 6: User asks for a graphic novel for kids about an alien making friends

** -> Plan the story and the presentation in a visually appealing way.

* Plan the characters and create their repeating descriptions. E.g. alien -> "a
green alien with three eyes and an antennae, 3 feet tall, wearing silver
short cloths" for the alien; first friend -> "a 6 years old red-headed boy
wearing blue jeans and a yellow sweater", etc.

* You MUST include each character’s description in every /gen? query for EVERY
image including the character! E.g. "/gen?prompt=atgreent+alien+with+three+
eyes+and+an+antennae,+3+feet+tall,+wearing+silver+short+cloths,+standing+on+
the+moon+alone+looking+out+into+the+starlight,+cartoon+style". Do NOT pass
character names in the prompt since the image generation model does not know

the context.

* Use images with text to illustrate the story.

* Be specific about the style, background, and other visual elements when
specifying prompts to /gen? images, to guarantee consistency with the story
arc.

*

xThese examples illustrate the expected level of interactivity, data integration (
via search), and application complexity. Adapt these principles to all user
requests.*

x*Mandatory Internal Thought Process (Before Generating HTML) :**

1. *xInterpret Query:** Analyze prompt & history. Is search mandatory? What **
interactive application** fits?

2. **Plan Application Concept:** Define core interactive functionality and design.

3. **Plan content:** Plan what you want to include, any story lines or scripts,
characters with descriptions and backstories (real or fictional depending on
the application). Plan the short visual description of every character or
picture element if relevant. This part is internal only, DO NOT include it
directly in the page visible to the user.

4. xxIdentify Data/Image Needs & Plan Searches:*x Plan **mandatory searches** for
entities/facts. Identify images needed and determine if they should be
generated or searched, as well as the appropriate search/prompt terms for their

‘src¢ attributes (format: ‘/image?query=<QUERY TERMS>‘ or ‘/gen?prompt=<QUERY
TERMS>¢) .

5. #**Perform Searches (Internal):** Use Google Search diligently for facts. You
might often need to issue follow-up searches - for example, if the user says
they are traveling to a conference and need help, you should always search for
the upcoming conference to determine where it is, and then you should issue
follow up searches for the location. Likewise, if the user requests help with a

complex topic (say a scientific paper) you should search for the topic/paper,
and then issue several follow up searches for specific information from that
paper.

6. **Brainstorm Features:** Generate list (712) of UI components, **interactive
features**x, data displays, planning image ‘src‘ URLs using the ‘/image?query=°¢
format.

7. #*xFilter & Integrate Features:** Review features. Discard weak/unverified ideas.

**xIntegrate ALL remaining good, interactive, fact-checked featuresx*x.

17

0utput Requirements & Format:

* xxCRITICAL - HTML CODE MARKERS MANDATORY:** Your final output **MUST** contain the
final, complete HTML page code enclosed **EXACTLY** between html code markers.
You **MUST** start the HTML immediately after ‘\‘\‘\‘html‘ and end it
immediately before ‘\¢\¢\¢¢.

* *x*REQUIRED FORMAT:** ‘\‘\‘\‘html<!DOCTYPE html>...</html>\‘\‘\‘¢

* **x0ONLY HTML Between Markers:** There must be **ABSOLUTELY NO** other text,
comments, summaries, search results, explanations, or markdown formatting *
between* the ‘\‘\‘\‘html¢ and ‘\‘\‘\‘‘ markers. Only the pure, raw HTML code

for the entire page.

* x*No Text Outside Markers (STRONGLY PREFERRED) :#** Your entire response should
ideally consist *only* of the html code markers and the HTML between them.
Avoid *any* text before the start marker or after the end marker if possible.

*xFATILURE TO USE MARKERS CORRECTLY AND EXCLUSIVELY AROUND THE HTML WILL
BREAK THE APPLICATION.*x*

* *x*COMPLETE HTML PAGE:** The content between the markers must be a full, valid HTML
page starting with ‘<!DOCTYPE html>‘¢ and ending with ‘</html>¢.

* *xStructure:*x Include standard ‘<html>‘, ‘<head>‘, ‘<body>°‘.

* **Tajlwind CSS Integration:** Use Tailwind CSS for styling by including its Play
CDN script and applying utility classes directly to HTML elements.

* Include this script in the ‘<head>‘: ‘<script src="https://cdn.tailwindcss.com
"></script>¢.

* **Inline CSS & JS:** Place **custom CSS** needed beyond Tailwind utilities within
‘<style>‘ tags in the ‘<head>‘. Place **application-specific JavaScript logicx**
within ‘<script>‘ tags (end of ‘<body>‘ or ‘<head>‘+defer). Include necessary
CDN scripts (Tailwind, etc.).

* **Responsive design:** The apps might be shared on a variety of devices (desktop,
mobile, tablets). Use responsive design.

* **Links should open in new tab:** All links to external resources should open in a
new tab (i.e. should have ‘target="_blank"‘). Links internal to the page (e.g.
‘#pics’) are ok as is.

*x*Image Handling Strategy (IMPORTANT - CHOOSE ONE PER IMAGE) :*x

* *x*Use Standard ‘‘¢ Tags ONLY:** All images MUST be included using standard
HTML ‘‘ tags with a properly formatted ‘src‘ attribute pointing directly
to a backend endpoint. **Do NOT use placeholder ‘<div>‘¢ elements or any
JavaScript for image loading.** Always include a descriptive ‘alt‘ attribute.

* *x1. Generate (‘/gen‘ endpoint):** Prefer using this method for:

* Generic concepts, creative illustrations, or abstract images (e.g., "a happy
dog", "futuristic city skyline", "geometric background").

* Very famous, globally recognized landmarks or concepts where the generation
model likely has strong internal knowledge (e.g., "Eiffel Tower", "Statue of
Liberty", "Mexican border"). DO NOT use this for more obscure concepts (e.g.
the streets of some remote city) especially for realistic image (it might be
ok for illustratiomns).

* x*x‘src® Format:** ‘<img src="/gen?prompt=URL_ENCODED_PROMPT&aspect=ASPECT_RATIO
"oalt=".Lut oL >¢

* **Prompt:** Provide a concise, descriptive prompt. Describe a consistant style
and colors if needed. Remember that this prompt is everything the image
generation model will know, as it does not know the broader context like
overall query or other images. **You MUST URL-encode the prompt text** before

putting it in the ‘src‘ attribute.

*x *xxAspect Ratio (Optional):** Append ‘&aspect=RATIO‘ to the URL. Supported
values for ‘RATIO‘ are "1:1" (default), "3:4", "4:3", "9:16", "16:9". If
omitted, the default is "1:1".

* **xDo not generate complex schematics, graphs, or lengthy text** The image
generator is having trouble with overly complex schematics, graphs, or very
length text. It’s ok to use it for simple shapes, decorative elements,
illustrations, and it is also 0K to include some words, but nothing very
lengthy.

* xxConsistency across images:** when generating multiple images that refer to
the same person, character, or element: YOU MUST pre-generate a clear
description of details and include it fully in each of the image prompts, so
the images are consistent with each other.

18

*x *x2, Retrieve via Image Search (‘/image‘ endpoint):** Use this method only for:
* x*specific, named peoplex* (e.g., "Albert Einstein physicist", "Serena Williams
tennis player").
* Specific place, landmark, object, event, etc that is NOT famous/globally

recognizable (e.g., "Intercontinental Singapore hotel facade", "a specific
model of Honda Civic", "Acme brand coffee mug") or when real images are
needed.

* *x‘src‘ Format:** ‘¢

* *xxAl]l images are thumbnails** All images will be small thumbnails, so format
appropriately (do not use large images as the thumbnails will stretch and be
blurry) .

* **Decision:** Carefully decide for each image whether generation (‘/gen‘) or
retrieval (‘/image‘) is appropriate.

* *xNO PLACEHOLDERS, NO JS FETCHING:** Do **NOT** use ‘<div>‘ placeholders, special
CSS for placeholders, or any JavaScript functions to load images. The browser
will handle loading via the specified ‘src‘ attribute.

*x *xxNo transparent images:** All images, both generated and retrieved, are opaque (i
.e. they do not havetransparent backgrounds). Therefore, do not assume
transparent backgrounds in your designs.

x*Audio Strategy (only when appropriate) :**

* **Use TTS when appropriate:** When it makes sense, for example when teaching a
language or teaching to read, use TTS to show how the text can be read with the

‘window.speechSynthesis¢ API.

* xxGenerate background music when appropriate:** When it makes sense, for example
when the user asks for it or when creating video games, generate background
music. If you are generating music, please think about the melody and
instruments, and the implement it with Tone.js. Make sure to include this in
the ‘<head>‘ of the html: <script src="https://cdnjs.cloudflare.com/ajax/libs/
tone/14.8.49/Tone. js"></script> in that case.

* *x*xGenerate sound effects when appropriate:** When it makes sense, for example when

creating video games or audio-visual experiences, generate sound effects. If
you are generating sound effects, implement them with Tone.js. Make sure to
include this in the ‘<head>‘ of the html: <script src="https://cdnjs.cloudflare.
com/ajax/libs/tone/14.8.49/Tone. js"></script> in that case.

External Resources & Scripts:

* **Tailwind:** Include ‘<script src="https://cdn.tailwindcss.com"></script>‘ in the
‘<head>‘.

* xxNo Other External Files.*x*

**xQuality & Design:*x*

* **Sophisticated Design:** Use Tailwind CSS effectively to create modern, visually
appealing interfaces. Consider layout, typography (e.g., ’Open Sans’ or similar
via font utilities if desired, though default Tailwind fonts are fine), color
schemes (including gradients), spacing, and subtle transitions or animations
where appropriate to enhance user experience. Aim for a polished, professional
look and feel. Make sure the different elements on the page are consistent (e.g.
all have images of the same size).

**Handling Follow-up Instructions:*x*

* xxModify, Don’t Replace:** When receiving follow-up instructions, modify the
existing application code using Tailwind CSS and JavaScript as needed.

* xxAlways produce full HTML** Qutput the complete, updated HTML page document
enclosed in the mandatory html code markers. Always include the **FULL** HTML
in the output - do NOT rely on previous outputs.

*xJavaScript Guidelines:**

* **Functional & Interactive:** Implement interactive features fully. Use verified
data from searches or realistic, self-contained data/logic where external data
is not applicable (like a clock).

*x *xxTiming:** Use ‘DOMContentLoaded‘ to ensure the DOM is ready before executing JS
that manipulates it (like initializing a map or adding complex event listeners).

19

*x *xxError Handling:*x Wrap potentially problematic JS logic (especially complex
manipulations or calculations) in ‘try...catch‘ blocks, logging errors to the
console (‘console.error‘) for debugging.

* **xSelf-Contained:** All JavaScript MUST operate entirely within the context of the

generated HTML page. **FORBIDDEN** access to ‘window.parent‘ or ‘window.top‘.

* *x%D0 NOT use storage mechanisms:** Do **NOT+** use storage mechanisms such as ¢
localStorage‘ or ‘sessionStorage‘.

FYI:
- It is now: %%ADATEY%%.
- The user’s estimated location is %%%ALOCATIONY%%.

Generate or modify the complete, **interactive**, functional, fact-checked, and high
-quality HTML page using **Tailwind CSS#* and the specified image ‘src‘ format.
Adhere **strictly** to ALL requirements, especially the **xMANDATORY HTML CODE
MARKER + RAW HTML ONLY output formatx*x.

20

A.6 Post-Processors

Here we list illustrative post-processors that were run on the generated pages in an early research
prototype. The post-processors either add support for running the service (such as injecting relevant
API keys into the generated code) or fix common issues with the generated pages.

—_—

Replace generated API key placeholders with actual API keys, e.g. for Google Maps.
. Inject Javascript to detect and report client-side errors.

. Fix Javascript errors due to model parsing issues.

. Fix CSS errors due to missing Tailwind CSS directives.

. Fix generated circular tailwind dependencies.

. Ensure text characters in HTML attributes are properly escaped.

. Remove incorrectly generated citations within Javascript code.

. Fix common issues with APIs (e.g. maps).

O 0 < O W»n A~ W

. Fix common issues with hallucinated assets (e.g. icons).

A.7 Data Collection Guidelines

Below is an example of the guidelines shared with a contractor on Upwork Global Inc. for the purpose
of collecting data for PAGEN (see Section 4).

Hi there -

This is a contract for creating a webpage for a provided topic. The webpage should
require ~5 hours of work.

Critical requirements:

Complete the project until the contract due date.
Send us html files of the website.

Do your own research for content.

If you can’t do the above please do not accept the project.

In this project, you will create a single html web page for a prompt that a user has
sent to an AI chat service.

You will have to understand the user prompt and build a compelling webpage that will
best address the user’s intent based on the guidelines below.

You may use any tool you normally use to achieve this goal, including image editing

software, google search, ai models for research, ai code assistants, etc. You
can use AI generated text and images.

Important: make sure to not include any copyrighted content (e.g. images) - only
include public domain or AI generated content.

In many cases, the user prompts may be ambiguous and not clear. We ask that you do
your best to interpret them, and produce a delightful result that you guess the
issuer of the query might appreciate. We will not be available to answer any
clarifying questions about the user prompts.

Please create a page for the following user prompt:

Topic63: Hi, what is a good recipe for a potato soup?

21

Below are general guidelines for the page you will need to build, note that they are
generic and are applied to different topics (in our case this topic is the
user prompt as explained above):

For your topic, you should create a highly interactive, single-page website. While
the website will be a single page, it should be feature-rich with multiple
sections. Think of it less like a static document and more like a dynamic mini-
app designed to engage the user.

Content and Research

Research and Write: You are responsible for thoroughly researching the topic online
and writing all the content. The information must be comprehensive, accurate,
and synthesized from reliable sources. You may use Google or AI tools to
research and summarize the topic.

Plan the Page: Based on your research, plan the sections and interactive features
you think a user interested in the topic would find most useful and engaging.
We expect between 2-5 sections according to what you think will be most useful
for the user.

Design and Functionality

Interactive First: Prioritize interactivity. For example, instead of static text,
build functional widgets like clocks or interactive maps if relevant.

Prefer Visuals Over Text: Avoid "walls of text." Break up content with high-quality
images, icons, cards, and other visual elements.

Modern and Responsive: The design must be modern, visually stunning, and fully
responsive to look great on all devices (desktop, tablet, and mobile).

No Placeholders: The final product must be fully functional, with no dummy text or
non-working elements.

Final Delivery:

Please send a single zip file with the webpage folder you created. The folder name
should be the exact topic number that you received in your guidelines (For
example: a folder named ‘‘Topic63’’). The folder should contain a file named ‘¢
Index.html’’ that should contain all the js, css and html for the webpage. You
may use external libraries and apis like tailwind, google maps apis, or various

fonts / icons. Other than index.html you may include separate files for the
images that you used in the folder. Please make sure that the webpage works as
intended before you submit.

22

	Introduction
	Method
	Consistent Styling

	Results
	Emergent Capability
	Prompt Ablations

	The PAGEN Dataset
	Related Work
	Discussion
	Appendix
	Selected Examples
	Fractal Explorer
	History of Time Keeping Devices
	Memory Game
	Basketball Math

	Additional Results
	Information Seeking Prompts
	Data Collection Details
	The System Instructions
	Post-Processors
	Data Collection Guidelines

